Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees.

Identifieur interne : 003254 ( Main/Exploration ); précédent : 003253; suivant : 003255

Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees.

Auteurs : Caroline L. Côté [Canada] ; Francis Boileau ; Vicky Roy ; Mario Ouellet ; Caroline Levasseur ; Marie-Josée Morency ; Janice E K. Cooke ; Armand Séguin ; John J. Mackay

Source :

RBID : pubmed:21143995

Descripteurs français

English descriptors

Abstract

BACKGROUND

Class III Homeodomain Leucine Zipper (HD-Zip III) proteins have been implicated in the regulation of cambium identity, as well as primary and secondary vascular differentiation and patterning in herbaceous plants. They have been proposed to regulate wood formation but relatively little evidence is available to validate such a role. We characterised and compared HD-Zip III gene family in an angiosperm tree, Populus spp. (poplar), and the gymnosperm Picea glauca (white spruce), representing two highly evolutionarily divergent groups.

RESULTS

Full-length cDNA sequences were isolated from poplar and white spruce. Phylogenetic reconstruction indicated that some of the gymnosperm sequences were derived from lineages that diverged earlier than angiosperm sequences, and seem to have been lost in angiosperm lineages. Transcript accumulation profiles were assessed by RT-qPCR on tissue panels from both species and in poplar trees in response to an inhibitor of polar auxin transport. The overall transcript profiles HD-Zip III complexes in white spruce and poplar exhibited substantial differences, reflecting their evolutionary history. Furthermore, two poplar sequences homologous to HD-Zip III genes involved in xylem development in Arabidopsis and Zinnia were over-expressed in poplar plants. PtaHB1 over-expression produced noticeable effects on petiole and primary shoot fibre development, suggesting that PtaHB1 is involved in primary xylem development. We also obtained evidence indicating that expression of PtaHB1 affected the transcriptome by altering the accumulation of 48 distinct transcripts, many of which are predicted to be involved in growth and cell wall synthesis. Most of them were down-regulated, as was the case for several of the poplar HD-Zip III sequences. No visible physiological effect of over-expression was observed on PtaHB7 transgenic trees, suggesting that PtaHB1 and PtaHB7 likely have distinct roles in tree development, which is in agreement with the functions that have been assigned to close homologs in herbaceous plants.

CONCLUSIONS

This study provides an overview of HD-zip III genes related to woody plant development and identifies sequences putatively involved in secondary vascular growth in angiosperms and in gymnosperms. These gene sequences are candidate regulators of wood formation and could be a source of molecular markers for tree breeding related to wood properties.


DOI: 10.1186/1471-2229-10-273
PubMed: 21143995
PubMed Central: PMC3017839


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees.</title>
<author>
<name sortKey="Cote, Caroline L" sort="Cote, Caroline L" uniqKey="Cote C" first="Caroline L" last="Côté">Caroline L. Côté</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des Sciences du Bois et de la Forêt, Université Laval, 2405 rue de la Terrasse, Québec, QC G1V0A6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des Sciences du Bois et de la Forêt, Université Laval, 2405 rue de la Terrasse, Québec, QC G1V0A6</wicri:regionArea>
<orgName type="university">Université Laval</orgName>
<placeName>
<settlement type="city">Québec (ville)</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boileau, Francis" sort="Boileau, Francis" uniqKey="Boileau F" first="Francis" last="Boileau">Francis Boileau</name>
</author>
<author>
<name sortKey="Roy, Vicky" sort="Roy, Vicky" uniqKey="Roy V" first="Vicky" last="Roy">Vicky Roy</name>
</author>
<author>
<name sortKey="Ouellet, Mario" sort="Ouellet, Mario" uniqKey="Ouellet M" first="Mario" last="Ouellet">Mario Ouellet</name>
</author>
<author>
<name sortKey="Levasseur, Caroline" sort="Levasseur, Caroline" uniqKey="Levasseur C" first="Caroline" last="Levasseur">Caroline Levasseur</name>
</author>
<author>
<name sortKey="Morency, Marie Josee" sort="Morency, Marie Josee" uniqKey="Morency M" first="Marie-Josée" last="Morency">Marie-Josée Morency</name>
</author>
<author>
<name sortKey="Cooke, Janice E K" sort="Cooke, Janice E K" uniqKey="Cooke J" first="Janice E K" last="Cooke">Janice E K. Cooke</name>
</author>
<author>
<name sortKey="Seguin, Armand" sort="Seguin, Armand" uniqKey="Seguin A" first="Armand" last="Séguin">Armand Séguin</name>
</author>
<author>
<name sortKey="Mackay, John J" sort="Mackay, John J" uniqKey="Mackay J" first="John J" last="Mackay">John J. Mackay</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:21143995</idno>
<idno type="pmid">21143995</idno>
<idno type="doi">10.1186/1471-2229-10-273</idno>
<idno type="pmc">PMC3017839</idno>
<idno type="wicri:Area/Main/Corpus">002F83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F83</idno>
<idno type="wicri:Area/Main/Curation">002F83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F83</idno>
<idno type="wicri:Area/Main/Exploration">002F83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees.</title>
<author>
<name sortKey="Cote, Caroline L" sort="Cote, Caroline L" uniqKey="Cote C" first="Caroline L" last="Côté">Caroline L. Côté</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des Sciences du Bois et de la Forêt, Université Laval, 2405 rue de la Terrasse, Québec, QC G1V0A6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des Sciences du Bois et de la Forêt, Université Laval, 2405 rue de la Terrasse, Québec, QC G1V0A6</wicri:regionArea>
<orgName type="university">Université Laval</orgName>
<placeName>
<settlement type="city">Québec (ville)</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boileau, Francis" sort="Boileau, Francis" uniqKey="Boileau F" first="Francis" last="Boileau">Francis Boileau</name>
</author>
<author>
<name sortKey="Roy, Vicky" sort="Roy, Vicky" uniqKey="Roy V" first="Vicky" last="Roy">Vicky Roy</name>
</author>
<author>
<name sortKey="Ouellet, Mario" sort="Ouellet, Mario" uniqKey="Ouellet M" first="Mario" last="Ouellet">Mario Ouellet</name>
</author>
<author>
<name sortKey="Levasseur, Caroline" sort="Levasseur, Caroline" uniqKey="Levasseur C" first="Caroline" last="Levasseur">Caroline Levasseur</name>
</author>
<author>
<name sortKey="Morency, Marie Josee" sort="Morency, Marie Josee" uniqKey="Morency M" first="Marie-Josée" last="Morency">Marie-Josée Morency</name>
</author>
<author>
<name sortKey="Cooke, Janice E K" sort="Cooke, Janice E K" uniqKey="Cooke J" first="Janice E K" last="Cooke">Janice E K. Cooke</name>
</author>
<author>
<name sortKey="Seguin, Armand" sort="Seguin, Armand" uniqKey="Seguin A" first="Armand" last="Séguin">Armand Séguin</name>
</author>
<author>
<name sortKey="Mackay, John J" sort="Mackay, John J" uniqKey="Mackay J" first="John J" last="Mackay">John J. Mackay</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cambium (genetics)</term>
<term>Cambium (growth & development)</term>
<term>Cycadopsida (genetics)</term>
<term>Cycadopsida (growth & development)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Developmental (drug effects)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Homeodomain Proteins (classification)</term>
<term>Homeodomain Proteins (genetics)</term>
<term>Indoleacetic Acids (pharmacology)</term>
<term>Leucine Zippers (genetics)</term>
<term>Magnoliopsida (genetics)</term>
<term>Magnoliopsida (growth & development)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Picea (growth & development)</term>
<term>Plant Growth Regulators (pharmacology)</term>
<term>Plant Proteins (classification)</term>
<term>Plant Proteins (genetics)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (growth & development)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Trees (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides indolacétiques (pharmacologie)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Arbres (génétique)</term>
<term>Cambium (croissance et développement)</term>
<term>Cambium (génétique)</term>
<term>Cycadopsida (croissance et développement)</term>
<term>Cycadopsida (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteur de croissance végétal (pharmacologie)</term>
<term>Famille multigénique (MeSH)</term>
<term>Glissières à leucine (génétique)</term>
<term>Magnoliopsida (croissance et développement)</term>
<term>Magnoliopsida (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Picea (croissance et développement)</term>
<term>Populus (croissance et développement)</term>
<term>Protéines végétales (classification)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines à homéodomaine (classification)</term>
<term>Protéines à homéodomaine (génétique)</term>
<term>RT-PCR (MeSH)</term>
<term>Régulation de l'expression des gènes au cours du développement (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Homeodomain Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Protéines végétales</term>
<term>Protéines à homéodomaine</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Cambium</term>
<term>Cycadopsida</term>
<term>Magnoliopsida</term>
<term>Picea</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cambium</term>
<term>Cycadopsida</term>
<term>Homeodomain Proteins</term>
<term>Leucine Zippers</term>
<term>Magnoliopsida</term>
<term>Plant Proteins</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Cambium</term>
<term>Cycadopsida</term>
<term>Magnoliopsida</term>
<term>Picea</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Cambium</term>
<term>Cycadopsida</term>
<term>Glissières à leucine</term>
<term>Magnoliopsida</term>
<term>Protéines végétales</term>
<term>Protéines à homéodomaine</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acides indolacétiques</term>
<term>Facteur de croissance végétal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Indoleacetic Acids</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Données de séquences moléculaires</term>
<term>Famille multigénique</term>
<term>Phylogenèse</term>
<term>RT-PCR</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Class III Homeodomain Leucine Zipper (HD-Zip III) proteins have been implicated in the regulation of cambium identity, as well as primary and secondary vascular differentiation and patterning in herbaceous plants. They have been proposed to regulate wood formation but relatively little evidence is available to validate such a role. We characterised and compared HD-Zip III gene family in an angiosperm tree, Populus spp. (poplar), and the gymnosperm Picea glauca (white spruce), representing two highly evolutionarily divergent groups.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Full-length cDNA sequences were isolated from poplar and white spruce. Phylogenetic reconstruction indicated that some of the gymnosperm sequences were derived from lineages that diverged earlier than angiosperm sequences, and seem to have been lost in angiosperm lineages. Transcript accumulation profiles were assessed by RT-qPCR on tissue panels from both species and in poplar trees in response to an inhibitor of polar auxin transport. The overall transcript profiles HD-Zip III complexes in white spruce and poplar exhibited substantial differences, reflecting their evolutionary history. Furthermore, two poplar sequences homologous to HD-Zip III genes involved in xylem development in Arabidopsis and Zinnia were over-expressed in poplar plants. PtaHB1 over-expression produced noticeable effects on petiole and primary shoot fibre development, suggesting that PtaHB1 is involved in primary xylem development. We also obtained evidence indicating that expression of PtaHB1 affected the transcriptome by altering the accumulation of 48 distinct transcripts, many of which are predicted to be involved in growth and cell wall synthesis. Most of them were down-regulated, as was the case for several of the poplar HD-Zip III sequences. No visible physiological effect of over-expression was observed on PtaHB7 transgenic trees, suggesting that PtaHB1 and PtaHB7 likely have distinct roles in tree development, which is in agreement with the functions that have been assigned to close homologs in herbaceous plants.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study provides an overview of HD-zip III genes related to woody plant development and identifies sequences putatively involved in secondary vascular growth in angiosperms and in gymnosperms. These gene sequences are candidate regulators of wood formation and could be a source of molecular markers for tree breeding related to wood properties.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21143995</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>03</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<PubDate>
<Year>2010</Year>
<Month>Dec</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees.</ArticleTitle>
<Pagination>
<MedlinePgn>273</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-10-273</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Class III Homeodomain Leucine Zipper (HD-Zip III) proteins have been implicated in the regulation of cambium identity, as well as primary and secondary vascular differentiation and patterning in herbaceous plants. They have been proposed to regulate wood formation but relatively little evidence is available to validate such a role. We characterised and compared HD-Zip III gene family in an angiosperm tree, Populus spp. (poplar), and the gymnosperm Picea glauca (white spruce), representing two highly evolutionarily divergent groups.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Full-length cDNA sequences were isolated from poplar and white spruce. Phylogenetic reconstruction indicated that some of the gymnosperm sequences were derived from lineages that diverged earlier than angiosperm sequences, and seem to have been lost in angiosperm lineages. Transcript accumulation profiles were assessed by RT-qPCR on tissue panels from both species and in poplar trees in response to an inhibitor of polar auxin transport. The overall transcript profiles HD-Zip III complexes in white spruce and poplar exhibited substantial differences, reflecting their evolutionary history. Furthermore, two poplar sequences homologous to HD-Zip III genes involved in xylem development in Arabidopsis and Zinnia were over-expressed in poplar plants. PtaHB1 over-expression produced noticeable effects on petiole and primary shoot fibre development, suggesting that PtaHB1 is involved in primary xylem development. We also obtained evidence indicating that expression of PtaHB1 affected the transcriptome by altering the accumulation of 48 distinct transcripts, many of which are predicted to be involved in growth and cell wall synthesis. Most of them were down-regulated, as was the case for several of the poplar HD-Zip III sequences. No visible physiological effect of over-expression was observed on PtaHB7 transgenic trees, suggesting that PtaHB1 and PtaHB7 likely have distinct roles in tree development, which is in agreement with the functions that have been assigned to close homologs in herbaceous plants.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study provides an overview of HD-zip III genes related to woody plant development and identifies sequences putatively involved in secondary vascular growth in angiosperms and in gymnosperms. These gene sequences are candidate regulators of wood formation and could be a source of molecular markers for tree breeding related to wood properties.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Côté</LastName>
<ForeName>Caroline L</ForeName>
<Initials>CL</Initials>
<AffiliationInfo>
<Affiliation>Département des Sciences du Bois et de la Forêt, Université Laval, 2405 rue de la Terrasse, Québec, QC G1V0A6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boileau</LastName>
<ForeName>Francis</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roy</LastName>
<ForeName>Vicky</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ouellet</LastName>
<ForeName>Mario</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Levasseur</LastName>
<ForeName>Caroline</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morency</LastName>
<ForeName>Marie-Josée</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cooke</LastName>
<ForeName>Janice E K</ForeName>
<Initials>JE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Séguin</LastName>
<ForeName>Armand</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>MacKay</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>HQ391914</AccessionNumber>
<AccessionNumber>HQ391915</AccessionNumber>
<AccessionNumber>HQ391916</AccessionNumber>
<AccessionNumber>HQ391917</AccessionNumber>
</AccessionNumberList>
</DataBank>
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE24703</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>12</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018398">Homeodomain Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058506" MajorTopicYN="N">Cambium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032462" MajorTopicYN="N">Cycadopsida</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018398" MajorTopicYN="N">Homeodomain Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016350" MajorTopicYN="N">Leucine Zippers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21143995</ArticleId>
<ArticleId IdType="pii">1471-2229-10-273</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-10-273</ArticleId>
<ArticleId IdType="pmc">PMC3017839</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2003 Oct 14;13(20):1768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1142-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16607028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 7;411(6838):709-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:299-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):643-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Jul;12(7):1075-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12097344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):653-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Proced Online. 2006;8:175-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1995 Dec;121(12):4171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8575317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Oct 23;1442(1):1-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9767075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2368-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jan;17(1):61-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15598805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Oct;30(10):1273-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Dev. 2006 Jul-Aug;8(4):350-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16805899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Apr;45(4):369-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1999 Apr;16(4):544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D34-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Feb;18(4):675-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1313711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(3):469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Apr;6(2):113-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12667866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Apr;18(4):491-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Feb 15;30(4):e15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):549-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 May;120(1):53-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Nov;11(11):2139-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2008 Jul;9(4):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Apr;42(1):84-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15773855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genesis. 2001 Aug;30(4):220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11536428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Dec;29(6):1223-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8616220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 May;173(1):373-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Pol. 1982;29(3-4):245-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7158172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Oct;46(10):1646-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):448-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16126860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Oct;61(3):221-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):540-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17122071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Apr;42(6):819-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Apr;166(1):39-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2008;9:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18710525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2007 May;134(9):1653-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1412-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Oct;43(10):1146-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12407194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Jan;45(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11247607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2004 Dec 15;20(1):21-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15454580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jan;25(2):223-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jan 26;282(4):2676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17135236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005;6:144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16236172</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Québec (ville)</li>
</settlement>
<orgName>
<li>Université Laval</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Boileau, Francis" sort="Boileau, Francis" uniqKey="Boileau F" first="Francis" last="Boileau">Francis Boileau</name>
<name sortKey="Cooke, Janice E K" sort="Cooke, Janice E K" uniqKey="Cooke J" first="Janice E K" last="Cooke">Janice E K. Cooke</name>
<name sortKey="Levasseur, Caroline" sort="Levasseur, Caroline" uniqKey="Levasseur C" first="Caroline" last="Levasseur">Caroline Levasseur</name>
<name sortKey="Mackay, John J" sort="Mackay, John J" uniqKey="Mackay J" first="John J" last="Mackay">John J. Mackay</name>
<name sortKey="Morency, Marie Josee" sort="Morency, Marie Josee" uniqKey="Morency M" first="Marie-Josée" last="Morency">Marie-Josée Morency</name>
<name sortKey="Ouellet, Mario" sort="Ouellet, Mario" uniqKey="Ouellet M" first="Mario" last="Ouellet">Mario Ouellet</name>
<name sortKey="Roy, Vicky" sort="Roy, Vicky" uniqKey="Roy V" first="Vicky" last="Roy">Vicky Roy</name>
<name sortKey="Seguin, Armand" sort="Seguin, Armand" uniqKey="Seguin A" first="Armand" last="Séguin">Armand Séguin</name>
</noCountry>
<country name="Canada">
<region name="Québec">
<name sortKey="Cote, Caroline L" sort="Cote, Caroline L" uniqKey="Cote C" first="Caroline L" last="Côté">Caroline L. Côté</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003254 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003254 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21143995
   |texte=   Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21143995" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020